Empirical statistical estimates for sequence similarity searches.
نویسنده
چکیده
The FASTA package of sequence comparison programs has been modified to provide accurate statistical estimates for local sequence similarity scores with gaps. These estimates are derived using the extreme value distribution from the mean and variance of the local similarity scores of unrelated sequences after the scores have been corrected for the expected effect of library sequence length. This approach allows accurate estimates to be calculated for both FASTA and Smith-Waterman similarity scores for protein/protein, DNA/DNA, and protein/translated-DNA comparisons. The accuracy of the statistical estimates is summarized for 54 protein families using FASTA and Smith-Waterman scores. Probability estimates calculated from the distribution of similarity scores are generally conservative, as are probabilities calculated using the Altschul-Gish lambda, kappa, and eta parameters. The performance of several alternative methods for correcting similarity scores for library-sequence length was evaluated using 54 protein superfamilies from the PIR39 database and 110 protein families from the Prosite/SwissProt rel. 34 database. Both regression-scaled and Altschul-Gish scaled scores perform significantly better than unscaled Smith-Waterman or FASTA similarity scores. When the Prosite/ SwissProt test set is used, regression-scaled scores perform slightly better; when the PIR database is used, Altschul-Gish scaled scores perform best. Thus, length-corrected similarity scores improve the sensitivity of database searches. Statistical parameters that are derived from the distribution of similarity scores from the thousands of unrelated sequences typically encountered in a database search provide accurate estimates of statistical significance that can be used to infer sequence homology.
منابع مشابه
Getting More from Less ALGORITHMS FOR RAPID PROTEIN IDENTIFICATION WITH MULTIPLE SHORT PEPTIDE SEQUENCES*□S
We describe two novel sequence similarity search algorithms, FASTS and FASTF, that use multiple short peptide sequences to identify homologous sequences in protein or DNA databases. FASTS searches with peptide sequences of unknown order, as obtained by mass spectrometry-based sequencing, evaluating all possible arrangements of the peptides. FASTF searches with mixed peptide sequences, as genera...
متن کاملGetting more from less: algorithms for rapid protein identification with multiple short peptide sequences.
We describe two novel sequence similarity search algorithms, FASTS and FASTF, that use multiple short peptide sequences to identify homologous sequences in protein or DNA databases. FASTS searches with peptide sequences of unknown order, as obtained by mass spectrometry-based sequencing, evaluating all possible arrangements of the peptides. FASTF searches with mixed peptide sequences, as genera...
متن کاملFlexible sequence similarity searching with the FASTA3 program package.
The FASTA3 and FASTA2 packages provide a flexible set of sequence-comparison programs that are particularly valuable because of their accurate statistical estimates and high-quality alignments. Traditionally, sequence similarity searches have sought to ask one question: "Is my query sequence homologous to anything in the database?" Both FASTA and BLAST can provide reliable answers to this quest...
متن کاملAccurate statistical model of comparison between multiple sequence alignments
Comparison of multiple protein sequence alignments (MSA) reveals unexpected evolutionary relations between protein families and leads to exciting predictions of spatial structure and function. The power of MSA comparison critically depends on the quality of statistical model used to rank the similarities found in a database search, so that biologically relevant relationships are discriminated f...
متن کاملEmpirical determination of effective gap penalties for sequence comparison
MOTIVATION No general theory guides the selection of gap penalties for local sequence alignment. We empirically determined the most effective gap penalties for protein sequence similarity searches with substitution matrices over a range of target evolutionary distances from 20 to 200 Point Accepted Mutations (PAMs). RESULTS We embedded real and simulated homologs of protein sequences into a d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 276 1 شماره
صفحات -
تاریخ انتشار 1998